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FACTORS AFFECTING F L O W  DISTORTIONS 

PRODUCED BY SUPERSONIC IML;ETS 

By Thomas G. Piercy 

Typical effects o f  flow dis tor t ions  on turbojet-engine  performance 
are reviewed f o r t h e  sake of completeness. Primmily, however, means 

0 are sought t o  reduce the d i s to r t ions   en te r ing  the compressor. 

Flow d i s t o r t i o n s   e n t e r i n g  the corugressor may be reduced by reducing 
* the d i s to r t ion   en te r ing  the i n l e t   d i f f u s e r  and by improving the mount  

of mixing that gener+y occurs I n  the subsonic  diffuser.  Sources of 
d i s t o r t i o n   i n  the supe r son ic   i n l e t  are enumerated  and steps are sug- 
gested that might be taken t o  reduce their  effects. Also, parameters 
affecting the mixing  of these d i s t o r t e d  flows i n  the subsonic   diffuser  
are discussed. - 

INTRODUCTION 

The performance of many current  subsonic and t ransonic   a i rp lanes  
has been  reduced t o  some exten t  by the presence of nonuniform flow at  
the compressor of the  turbojet   engine.  These f low  d is tor t ions  axe char- 
ac t e r i zed   by   va r i a t ions  in the velocity or total pressure  of the air 
e n t e r i n g   t h e  compressor  and axe usua l ly  expressed either as the maximum 
varriation in ve loc i ty  AV or to ta l  pressure AP divided by a reference  
ve loc i ty   o r   p re s su re .  

Typical effects of d i s t o r t i o n  on turbojet  engine  performance are 
discussed for completeness. It is evident  that these flow d i s t o r t i o n s  
must be h e l d   t o  a minimum, and applicable f a c t o r s  are discussed.  Sources 
of d i s t o r t i o n   i n  the supe r son ic   i n l e t  are enumerated  and steps axe sug- 
gested which might be taken t o  reduce their  effects. In   addi t ion  param- 
eters a f f e c t i n g  the damping o u t . o f  these f l o w  d i s t o r t i o n s   i n  the sub- 

a sonic  diff 'user are discussed. 



2 NACA RM E55Ll9 
c 

- 
SYMBOLS 

The following symbols are used i n  t h i s  report: 

diameter of constant-&rea straight sec t ion  

hydraulic  diameter of  i n l e t  throat 

i n l e t - th roa t  height 

parameter def in ing  amount of external boundary layer removed 

l eng th  of subsonic   diffuser  

l eng th  of constant-area straight sec t ion  

Mach number 

mass flow 

total pressure 

d i f fe rence  between maximum and minimum values  of t o t a l  pressure 
as measured by rake 

static-pressure  increment 

dynamic pressure 

s tagnat ion speed of sound 

d i f fe rence  between maximum and minlmm v e l o c i t i e s  

boundary-layer  thickness 

cone half-angle 

Subscripts: 

av average 

b annulus 

0 free stream 

5 -  
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The penal ty  of flow d i s t o r t i o n  on engine  performance is  dependent 
upon the p a r t i c u b  englne under  consideration  and upon the type of flbw 
d i s t o r t i o n  (that is, whether the f l o w  varies radially between the com- 
pressor  hub and  blade t i p ,  o r  varies circumferentially  around the com- 
pressor  annulus, or, as is the usual   case,  whether the flow has compon- 
e n t s  of both r a d i a l  and  Circumferent ia l   d is tor t ion) .  Also t h e  magnitude 
and ex ten t  of the flow d i s t o r t i o n  affects engine  performance.  Therefore, 
i n  the following discussion, Borne of the possible effects of d i s t o r t i o n  
on engine  performance will be discussed. It should be understood that 
any  given  engine-duct  combination may no t   su f f e r  from a l l  of the observed 
effects; on the other hand no englne-duct  combination has been  found 
immune from all of  these effects. 

A t y p i c a l  effect of c i r cumfe ren t i a l   d i s to r t ion  is shown i n  figure 1. 
When c i r cumfe ren t i a l   d i s to r t ion   en te r s  the compressor, the d i s to r t ion ,  
although  reduced  in  magnitude, persists through the last compressor 
stage.  Temperature  gradients  then exist at the turb ine  as the r e s u l t  of 
c i rcumferent ia l   var ia t ion   in  the fuel-air r a t i o  caused  by the d i s t o r t e d  
a i r  flow.  Although the tu rb ine  rotor feels only the average tanperatwe, 
the turb ine  stator at  some poin t  is subjec ted   to  higher than t h e  average 
temperatures. I n  order  to prevent failure of the s t a t o r  due t o  over- 

' heating, the average turbine temperature must be reduced (refs. 1 t o  3). 

The amount of necessary  turbine-temperature  reduction  for  several  
engines is shown i n  figure 1 as a funct ion of the en ter ing   to ta l -pressure  
d i s t o r t i o n .  Reduclng the tu rb ine  teqerature as r e q u i r e d   r e s u l t s   i n  the 
ind ica t ed   ne t   t h rus t  losses. These reductions  in  engine thrust can 
amount to as much as 1 percent  for  each 2 percent  of to ta l -pressure  
d i s t o r t i o n .  

Another effect of flow d i s t o r t i o n  is that of reducing  the stall 
margin of the compressor. ThiB effect is I l l u s t r a t e d   i n   f i g u r e  2 f o r  
two typical engines. Compressor pressure  ratio is plotted as a funct ion 
of  the corrected engine speed. The presence of radial d i s t o r t f o n  l o w e r e d  
t h e  compressor surge limit l i n e  in  comparison w i t h  the steady-state Oper- 
a t i n g   l i n e  and  caused t h e   r o t a t i n g  s t a l l  region to move t o  higher cor- 
rected engine speeds (fig. 2(a)) .  (See, fo r  example, refs. 1 and 3.) 
Lowering of the surge >it l ine   r educes  the acce lera t ion  margin of the 
compressor. Movement of the r o t a t i n g  stall region to  higher corrected 
engine speeds ind ica t e s  that the ",m flight speed at alt i tude m y  
be reduced by the occurrence of r o t a t i n g  stall. 

The presence of c i r cumfe ren t i a l   d i s to r t ion   fo r   ano the r   t yp ica l  en- 
gine  again lowered the compressor surge llmit line (fig. 2 (b) ) . The 
acceleration  margin of the compressor i s  again  reduced.  For  distortions 
of the order of 32 percent ,  the  maximum possible corrected  engine  speed 
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is about 108 percent.  Hence, the  cruis ing speed of  the   a i rp lane  can  be . 
affected by the  occurrence  of  large  circumferential   distortions.  

Another typical   effect   of   . f low  dis tor t ion is the  reduction of maxi- 
mum a l t i t u d e  due t a  compressor  surge  (for example, r e f .  1). An example 
of this e f f e c t  is presented i n  f igure  3. Alt i tude is p lo t ted  as a  func- 
t i on  of t he  compressor  speed.  With  uniform flow at the  compressor, a 
maximum a l t i t u d e  of about 62,000 f e e t  was achieved. This  l i m l t  it3 p r i -  
marily a r e s u l t  of .Reynolds number e f f ec t .  A t  the  higher compressor 
speeds ,   the   a l t i tude  l imf ted  by  the maximum turbine-out le t  
temperature. 

When circumferent ia l   d is tor t ion was introduced  into  the  compressor, 
t h e  maximum a l t i t u d e  was reduced t o  as low as 47,000 f e e t .  Although the 
d i s to r t ion   l eve l  w&8 about 20 percent  for  both  cases  presented,  quite 
d i f f e ren t   e f f ec t s  on t h e   a l t i t u d e  limits were  observed. The grea tes t  
reduction i n  a l t i tude  occurred with the extended  circumferential dis-  
t o r t i on  rather than  the  local ized  dietor t ion.  In order t o   ge t   t he  com- 
pressure  out  of  surge  for  these  cases,  a drop i n  a l t i t u d e   t o  35,000 f e e t  
was necessary. 

w 

I 

Final ly ,   d is tor t ion  increases  the s t r e s ses  and vibrations  of t h e  
compressor and may reduce  engine  cyclic  efficiencies (ref. 1 t o  3).  

I n  order  to  reduce  these  performance  penalt iee  to a minimum, it is  
e s s e n t i a l   t h a t   t h e  air i n l e t  produce as low a d i s to r t ion  a t  the  compres- 
sor   face as possible .  

DISTORTION PRODUCED IN SUPERSONIC IuL;ETS 

I n t u i t i v e l y ,   t h e   d i s t o r t i o n   e x i s t i n g  a t  the e x i t  of the subsonic 
d i f fuse r  might  be said t o  depend upon the  amount of d i s tor t ion   en ter ing  
the i n l e t   t h r o a t ,  upon the  existence of additional  sources of d i s to r t ion  
w-ithin t h e   i n l e t ,  and upon the amount of mixing, or damping, of these 
dis tor t ions  in   the  subsonic   diffuser .  

Mixing i n  Subsonic Diffuser 

The a3nount of mixing that   takes   place  in   the  subsonic   diffuser  i s  
known to be a function of the  length of the   d i f fuser .  For example, the 
to ta l -pressure   d i s tor t ions  at the d i f fuser  e x i t  of a v a r i e t y  of s ide-  
in le t   types  and f o r  Mach umbers  ranging  from 1.5 t o  3.0 are presented 
i n  f igure  4(a) aa a function of t h e   r a t i o  of diffuser length L t o  
throat  hydraulic diameter 91. The data points  represent  the distortion 
f o r  either c r i t i c a l  o r  engine-inlet  matching  conditions. These d i s to r -  . * 
t ions  were obtained  from  the data of' references 4 t o  10 and  from various 
unpublished data. 

L 

r 

i 
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Although t h e r e  is cons iderable   sca t te r   o f  the da ta ,   t he re  is a def- 
i n i t e   t r e n d  of l one r   d i s to r t ions  with increased   d i f fuser   l ength .   This  
scatter is due, i n  part, t o  the   d i f f e rence  of d i s t o r t i o n   e x i s t i n g  at  the 
inlet th roa t ,  a factor which is considered  in the sec t ion   Dis tor t ion  at 
In le t   Throa t .  Also, part  of t h e  scatter is due to the d i f f e rence   i n  
average Mach number of the   duc ts .   For  exaqle,  when mixfng takes place 
i n  a s t r a i g h t   d u c t  of constant  area at  a constant  Mach number (ref. 111, 
as shown i n  figure 4 (b) , a smooth curve ,  similar to  that sketched i n  
through  the data poin ts ,   resu l t s ,   a l though the parameters L/% and 2/D 
are not str ictly comparable. 

The effect of average Mach number on mixing is  considered  in fig- 
u r e  5. I n   f i g u r e  5(a), t h e  theoretical va r i a t ion  of t h e   v e l o c i t y   d i s -  
t o r t i o n  is p l o t t e d  86 a function of the   average f l o w  Mach number f o r  
three values  of tota; l -pressure  dis tor t ion.   In  this example, v e l o c i t y  
d i s t o r t i o n  is arbitrari ly d e f h e d  as the d i f f e rence  between the maximum 
and minimum v e l o c i t y  AV divided by a cons tan t   ve loc i ty ,  in this case 
the  s tagnat ion  speed of  sound p. At t h e  lower Mach numbers the  veloc-  
i t y  d i s to r t ion   i nc reases  for  a given level o f   t o t a l -p re s su re   d i s to r t ion .  
Thus, increased  mixing may be expected t o  occur in a duct  at the lower 
flow Mach numbers. 

Also, fo r  a given average Mach number, the v e l o c i t y   d i s t o r t i o n  de- 
creases as t h e  total-pressure d i s t o r t i o n  decreases. Thus, the   decrease  
o f   d i s to r t ion  by mixing is p ropor t iona l   t o  the d i s t o r t i o n .  For example, 
t h e  mixing tha t   occurs  in a s t r a i g h t   d u c t  of constant  area at  a given 
f l o w  Mach number would tend t o  decrease the to t a l -p re s su re   d i s to r t idn  
asymptotically  toward some minimum value.  There a r e  some ind ica t ions  
that t h i s  minimum value is probably that determined by the f l o w   p r o f i l e  
f o r  fully developed pipe f l o w  and would increase  as t h e  Mach number 
increases .  

To i l lustrate  some of these effects, t o t a l -p re s su re   d i s to r t ions  
measured i n  a constant -area duc t  at f l o w  Mach numbers of 0.20 and 0.37 
are presented   in  figure 5(b). A t  the lower Mach number, d i s t o r t i o n  de- 
creases  fa i r ly  rapidly  through  mixing. However, the d i s t o r t i o n  de- 
creases less r a p i d l y  at the higher Mach number because af both the de- 
creased rate of mixing and the decreased  residence  t ime  in any given 
l eng th  of duct.  The lowest   value of  d i s t o r t i o n  that could be expected 
w i t h  longer  mlxing  lengths would be about 2 percent a t  the f l o w  Mach 
number 0.2 and about 7.5 percent  at  Mach number 0.37 based on a fully 
developed  turbulent  profile.  All d i s t o r t i o n s  hereinafter are presented 
i n  terms of to ta l -pressure  rather than  veloci ty .  

The amount of mixing that occur s   i n  the inle t   subsonic   d i f fuser  
will depend upon the average Mach number of the   duc t ,  inasmuch as t h e  
flow is d i f fused  from a r e l a t i v e l y  high Mach number at the i n l e t  throat 
t o  a lower Mach number a t  the diff 'user exit. An example of t h e  
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importance  of  low  average Mach numbers i n  the  diffuser duct is presented 
i n  figure 6. The d i s to r t ion  at the  d i f fuser  exit f o r   c r i t i c a l   i n l e t  
operation is p lo t ted  .against free-stream .Mach_ number f o r  two nose-inlet  
models  which were i d e n t i c a l  with the  exception that the  cowl and center- 
body surfaces were a l t e r ed   t o   g ive   d i f f e ren t   r a t e s   o f   i n i t i a l   a r ea  ex- 
pansion at the  i n l e t  l i p .  These data, although  not  published, were  ob- 
t a ined  from the  invest igat ions of references 12 and 13. 

Although the  d i s to r t ion  a t  the  i n l e t  th roa t  was ident ica l   for   bo th  
models,  t he  model w i t h  1 2  percent i n i t i a l  area expansion  per i n l e t -  
throat  hydraulic diameter  had l o w e r  d i s to r t ion  at the   d i f fuser  exit t h a n  
the model with the  smaller area expansion. The two models discharged at 
the  same Mach number and, of course, had the same Mach number at the i n -  
l e t  l i p .  The var ia t ion  of  Mach number through the ducts,  however, wae 
different  because  of the  change in initial area  expansion. The model 
with  the  larger  area  expansion d i f f u s e d  m r e  rapidly, giving a lower 
average  duct Mach number. Thus, the lower d i s to r t ion  is be l ieved   to  be 
the  result of mre eff ic ient   mixing i n  the subsonic diffuser. 

There is evidence from these same data that constant-area  throat 
inlets,  which  have  proven des i rab le  i n  some cases from s t a b i l i t y  con- 
s idera t ions ,  and internal   contract ion inlets, which  promote low cowl 
drags, will have higher   dis tor t ions as t h e   r e s u l t  of reduced  mixing. 
From f igure  6,  mixing is promoted  by rapidly expanding the  diffuser  
duct.  Carrying t h i s  concept a l i t t l e  further, lower d i s to r t ions  ap- 
parently  could be produced  by  overexpanding  the  diffuser  duct  area t o  
provide low Mach numbers t o  increase the mixing. The flow  could t h e n  
be rapidly  accelerated at  the d i f fuee r   ex i t  t o  the  desired Mach number. 
Th i s  concept is feasible inasmuch 8s the  u s e  of  rapid accelerat ion will, 
o f  i t s e l f ,   r educe   d i s to r t ion .  Flow accelerat ion haa been known f o r  
some time to achieve more nearly  uniform flow at the throate  of 8 U b B O n i C  
wind tunne l s .  An example of  rapid flow acceleration a t  the   d i f fuse r   ex i t  
i s  shown i n  f igure  7.  Total-pressure  dis tor t ions were measured in a 
constant-area  straight  duct with and without  the  benefi t   of   rapid  accel-  
eration.  Acceleration from Mach number 0.37 t o  0.50 i n  the  annulus  
was provided by a hub simulating  the  accessory  housing of the   tu rboje t  
engine.   Insertion of the hub decreased  the  total-pressure  dis tor t ion 
from  about 16  ta about 1 2  percent a t  the end  of the   s t ra ight   sec t ion  
wi th   essent ia l ly  no loss i n  total-pressure  recovery.  

Forced  Mixing  Devices 

The u s e  of f r ee ly   ro t a t ing   b l ade  rows to reduce flow d i s to r t ion  a t  
low f low  veloci t ies  is reported i n  reference .14. The use  of  such  blade 
rows has since been inves t iga ted   theore t ica l ly  and the r e s u l t s  have 
appeared  promising i n  that dis tor t ion  reduct ion can be achieved with 
little o r  no total -pressure lOs8, Such a blade is . .  free  wheeling at a 

P 
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speed de termhed  by  the biade  an-ae  and”average axial Mach number and 
reduces  dis tor t ion by a c t i n g  as a t u r b i n e   i n   t h e - h i g h e r  than average 
ve loc i ty  f l o w  and as a compressor i n  the l o w  velocity flow. The b lade  
row then  t ransfers   energy t o  the low veloc i ty   reg ion  e t h  no n e t  work 
except for  that r e q u i r e d   t o  overcome b e a r i n g   f r i c t i o n .  A model of  the 
freely rotatipg  blade-row  apparatus has been b u i l t  and  tes ted,   and  the 
r e s u l t s  are presented in f i g u r e  8. These d a t a  were obtained  from un- 
published tests. A blade  row and a row of s t ra ightener   vanes were 
mounted on a hub i n  a s t r a igh t   duc t .   D i s to r t ion  was introduced by 
t h r o t t l i n g  the duct  flow across   sc reens   p laced   in  a portion of t h e  for- 
ward duct.  The d i s t o r t i o n  i n  the annulus a t  B w a s  then  measured  and 
p l o t t e d  as a f i n c t i o n  of the d i s t o r t i o n  a t  A ahead of the hub. The 
va r i a t ion  of t h e  Mach number i n  the annulus  due to  the t h r o t t l i n g  is  
a l s o   p l o t t e d  on t h e  abscissa. 

- 

The d i s to r t ion   i n   t he   annu lus  i s  lower than that ahead of the hub 
fo r   any   po in t  below t h e   s l a n t e d  l b e  through the or igin  of   coordinates .  

t i o n  was achieved without the b e n e f i t  of the b lade  row. This reduction 
was the r e s u l t  of the flow  acceleration  provided  by the hub and w a s  no t  

the   d i s tor t ion   in   the   annulus  was further  reduced. When r a d i a l   r a t h e r  
than   c i rcumferent ia l   d i s tor t ion  was introduced,  about the same d i s t o r -  
t ion   reduct ion  was achieved across the b lade  row.  A t  an  annulus Mach 
number of 0.5 , t h e   t o t a l - p r e s s u r e   d i s t o r t i o n  w a s  reduced  from 25.5 to 
15 percent   across  the b lade  row. For t h i s  r educ t ion   i n   d i s to r t ion   t he  
to ta l -pressure  loss was about 2.5 percent.  

* When c i r cumfe ren t i a l   d i s to r t ion  was introduced, some dis tor t ion   reduc-  

” affected by the r o w  of f l o w  s t r a igh tene r s .  When the blade row was added, 

Screens  have also been  used as forced mixing  devices (for example, 
refs. 15 t o  17). An example of  their  use  is shown i n  f i g u r e  9. The 
to t a l -p re s su re   d i s to r t ion  was measured  behind  screens of vary ing   so l id-  
i t y ,  that is, t h e  blockage area of the screen expressed as a percentage 
of the duct   c ross -sec t iona l  area. Two typ ica l   app l i ca t ions  are consid- 
ered; t he   cu rve   fo r   t he  lower Mach number 0.20 is rep resen ta t ive  of a 
ram-jet appl ica t ion ,  whereas that for  the higher &ch number 0.50 is 
more typical of the d i f f u s e r  discharge Mach number of a present-day  tur-  
bo j e t  engine; t h e  Mach number ahead of the   sc reens  was about 0.20 and 
0.37,  respectively.   For  both caseB, increas ing  the screen  blockage re- 
duced the d i s t o r t i o n .  However, there is a ltmit t o  the amount of screen 
blockage that may be added w i t h  no choking a t  the screens.  With chok- 
fng,   of   course,   in le t  mass flow would be reduced. 

The total-pressure loss across t h e   s c r e e n s . i s  plotted again as a 
funct ion of the sc reen   so l id i ty   ( f i g .   9 (b ) ) .  A t  a s o l i d i t y  of 30 per- 

and abbut 8 percent at the higher Mach umber.  I n  terms of the static- 
pressure  increment  divided  by  the  upstream dynamic pressure Ap/q, these 
losses  w e r e  about 0.75 and 1.50, respect ively,  for  the 30 percent  block- 
age screen. 

- cent ,   the   to ta l -pressure  loss w a s  2 percent  at the low average Mach number 

- 
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I n  order  to  propel  f 'uture aircraft to  higher  supersonic  speeds, 
higher  weight-flow  turbojet  engines will be required..  For  such  engines 
the  diff 'user  discharge Mach numbers will be of the order of 0.6 o r  even 
higher  over  portions  of t he  f l i g h t  range. Hence, mixing i n  the subsonic 
d i f fuse r  will probably be reduced.  Forced  mixing  devicee will be used 
with caution inasmuch as higher  total-pressure  losses have  been  indicated 
at higher  duct Mach numbers. For  such  configurations, the  d i s to r t ion  
en ter ing   the  i n l e t  t h roa t  must be kep t   t o  a minimum. 

Distbr t ion a t  I n l e t  Throat 

Distor t ion at the i n l e t  th roa t  is caused  primarily by nonuniform 
compression. Some of  the origins of these, d i s to r t ions   a r e  examined and 
the  r e su l t i ng   d i s to r t ions  at the diffuser e x i t  are presented i n  figures 
10 to 12.  

The to ta l -pressure   var ia t ion   acroas   the   in le t   th roa t  was determined 
fo r   t he   fu l l - s ca l e  534 nose i n l e t  at Mach number 1.8 ( f ig .  10).  These 
data were obtained from unpublished data r e l a t ed  t o  reference 18. To ta l -  
p ressure   p rof i les  at t h e  i n l e t  throat are  presented as a function of i n -  
l e t  mass-flow r a t i o .  For the indicated  configuration, a vortex  sheet 
or ig ina t ing  a t  the in te rsec t ion   of  the oblique and normal  shocks en ters  
the  i n l e t  th roa t   for   va lues  of mass flow less t h a n  the c r i t i c a l   v a l u e .  
Theoret ical ly ,  the air enter ing the  i n l e t  n e x t  t o   t h e  cowl will be at a 
pressure  recovery  of about  81 percent,  whereas the air below the vortex 
sheet is a t  R pressure recovery  of about 96 percent. As indicated,  the 
measured total   pressures  acros6  the  vortex  sheet  agreed  quite  well   with 
the   theore t ica l   va lues .  As the mass f l o w  w a s  reduced,  the  vortex  sheet 
pro@;t.essed farther towaxd the 'cone  surface.  

The d i s to r t ion  at t h e   i n l e t   t h r o a t  was determined from these  pro- 
files between the indicated limits t o  e l w i n a t e   t h e   e f f e c t s  on the  
boundary l aye r  and the  results me presented i n  f igure  11. As the mss 
f l o w  was reduced,  inlet   distortion  incressed  because of f a r t h e r  e n t r y  
of the  vortex sheet. Presented for comparison is  the d i s to r t ion  meas- 
ured  a t  the diffuser  exit. As the i n l e t  mas8 f l o w  was reduced,  the  exit 
distortion  increased  corresponding  to the increase of d i s to r t ion  at the 
i n l e t  th roa t .  However, 88 t he  mass flow was reduced, t h e  average Mach 
number of t h e  flow through the diff'user  decreased. Hence, at the  lower 
mass-flow ratios t he   d i s to r t ion  a t  the  diffuser  exit   decreased  because 
of increased  mixing,  although  the i n l e t  d i s to r t ion  remained  high. 

The entrance of the  vortex  sheet,   then,  increases the d i s to r t ion  
level   of   the   a i f f 'user .  By delaying entry of  the  vortex  sheet,  lower 
d i s to r t ions  can be achieved. This  may be done, fo r  exanrple,  by posi- 
t ion ing  the oblique  shock  ahead  of the i n l e t  l i p  so that the vortex 
sheet  w i l l  pass around t h e   i n l e t   f o r   s u b c r i t i c a l  i n l e t  operation rather 

0 
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t h a n   i n t o   t h e   i n l e t .  With variable-geometry i n l e t s  having  internal  con- 
t r a c t i o n   s u f f i c i e n t   t o  choke the i n l e t ,  the  en t ry   o f  a vortex sheet is 
unavoidable  and, as a result, t h e   d i s t o r t i o n   e n t e r i n g  the i n l e t  is  a p t  
t o  be large. Moreover, mixing i n  the subsonic diffuser of i n l e t s  with 
in t e rna l   con t r ac t ion  will probably be reduced  because  of the higher 
inlet-throat Mach numbers. 

Another example of nonuniform  compression is  that occurr ing a t  
angle   of  attack (fig.  12) .  The d i s t o r t i o n  was m e a s u r d  at the in le t  
th roa t ,  at two intermediate  posit ions,  and a t  t h e   d i f f u s e r  exit for the 
fu l l - sca l e  J34 conical-nose  inlet  a t  Mach number 2.0 for c r i t i c a l   i n l e t  
operat ion.  

Theoretically, a t  zero  angle  of attack, 3 t o  4 percen t   d i s to r t ion  
would be expected at the  in le t   th roa t   because   o f  the na tu re  of the con- 
i ca l  flow f ie ld .  Seven-percent d i s t o r t i o n ,  however, was measured. The 
higher d i s t o r t i o n  is  due t o  boundary-layer effects which  were not con- 
sidered. Similar ly ,  a t  an angle  of &tack of 100, nonuniform compres- 
s ion  would be expected t o  yield in l e t - th roa t   d i s to r t ions  of the  order  
of  14 t o  15 percent  around the inlet-throat  circumference.  The a c t u a l  
d i s t o r t i o n  measured, even at  an angle of attack of 3O, was over twice 
th i s   t heo re t i ca l   shock   vaue ,   aga in   because   o f  shock-boundary-layer 
i n t e rac t ion .  Along the upper  surface of the cone, the Mach number be- 
hind the oblique shock was q u i t e  high because of the reduced  compression. 
The terminal  shock was then   s t rong  enough to separate t h e  compression 
surface  boundary layer and t o   i n c r e a s e  the d i s t o r t i o n .  

As t he   f l ow  t r ave r sed   t he  diffuser, distortion  decreased  because of 
mixing. However, the mixing was n o t   s u f f i c i e n t  t o  overcome the large 
i n i t i a l   d i s t o r t i o n ,  and the d is tor t ion   increased  a t  the d i f f u s e r  exit 
as angle of  attack was increased. 

At zero angle of a t t ack ,  the d i s t o r t i o n  measured at t h e  second 
measuring  station was larger than a t  the i n l e t  throat. Th i s  increase  
was due t o  separat ion of t he  boundary Layer from the centerbody  surface 
between the two measuring  stations. Thus, sources of d i s t o r t i o n  exist 
within the in le t .   Separa t ion ,   rap id   duc t   tu rns ,  struts, and so f o r t h  
are all possible   sources  of d i s to r t ion   w i th in  the i n l e t .  

In order  to  reduce the characteristic increase  of d i s t o r t i o n   i n  
conical-nose  inlets  at angle of attack, s u c h   i n l e t s  must be shielded 
from  angle-of-attack effects. For example, the in le t s   could  be loca ted  
beneath and behind the wings  and close t o  the  fuselage.   Prel iminmy 
test  r e s u l t s  indicate a l s o  that alinement of the spike centerbody with 
the free-s t ream  direct ion  reduces the nonunifom  compression  and  hence 
reduces   d i s tor t ion .  

L 



10 I?ACA RM E55L19 

Other in l e t   t ypes  may be required  to   reduce  dis tor t ion a t  angle of 
attack.  For example, horizontal  ramp inlets are l e s s   s ens i t i ve   t o   ang le  
of a t tack ,  inasmuch as changes i n  angle of attack  merely  change the ef - 
fective  angle  of  compression. 

- 

The occurrence of shock-boundary-layer  interaction was seen -t;O have 
a n  important  effect  on d i s to r t ion  in f igure  1 2 .  This f ac to r  is examined 
more c lose ly  i n  f igure  13. The flow i n  the th roa t  of a conical-nose in- 
let  for c r i t i c a l  i n l e t  operation a t  a Mach number of 1.8 was determined 
f o r  a range of values of the conical  compression  angle 8, ( r e f .  18). 
By varying the  compression  angle, t he  Mach number ahead of the terminal E 
shock was changed. 

r 

The thickness of the compression surface boundary layer 6 exprese- 
ed as a percentage of the i n l e t  height HI is shown i n  figure 13(a) .  
Between cone  angles  of 30' and 25O, the boundmy-layer  thickness changed 
only from 3 t o  4 percent of the  inlet-duct  height.   For  the 200 cone 
half-angle, however, the  boundary-layer  thickness  doubled  because  of 
separation a t  the  terminal shock. The occurrence of this separation 
had been predicted  theoret ical ly  on t h e  bas i s  of the s ta t ic -pressure  
rise across  the terminal  shock. 

c 

The d i s to r t ion  a t  t h e  i n l e t  thr'oat is p lo t ted  as a function of the 
cone half-angle (fig.  13(b)) .  Although the d i s to r t ion  d id  not change . 
for   the  higher  cone angles,   the  distortion  increased  considerably for  
the  separated  flow  case st a cone  half-angle of ZOO. 

The d i s to r t ion  measured at the   d i f fuser  exit is again p lo t ted   for  
comparison. As the  cone  half-angle was decreased from 30' to 25O,  t h e  
average-flow Mach  number of t h e  duct decremed as a r e s u l t  of the r e -  
duced th roa t  Mach numbers, and the  exi t   d is tor t ion  decreased  a l though 
the d i s to r t ion  at the   th roa t  remained a b o u t  the same. At 8, of ZOO, 
the increased  mixing  could  not overcome the  high i n i t i a l   d i s t o r t i o n ,  
and the d i s to r t ion  a t  the e x i t  increased somewhat. 

Suitable   control  of the  compression-surface  boundary  layer would 
be expected to  reduce these separat ion  effects .  For example, i n  fig- 
ure 14 a typ ica l  ramg s ide  i n l e t  had provisions for both external and 
i n t e r n a l  boundary-layer  removal. With no external  removal, t he   d i s to r -  
t ion  a t  the diffuser ex i t   var ied  between 40 and about 63 percent   for  
c r i t i c a l   i n l e t   o p e r a t i o n .  By moving the i n l e t  out of  the boundary 
layer ,   the   d i s tor t ion  was progressively  decreased u n t i l ,  f o r  complete 
external  removal,   the  distortion w a ~  i n  the 15 t o  19 percent  level.  
The lowest   dis tor t ion was measured when i n t e r n a l  boundary-layer re- 
moval was used i n  conjunction with external  removal. For these  caees, 
the d i s to r t ion  wa8 reduced to a more acceptable   level  of 7 t o  10 per- 
cent .  Thus, suitable removal of t he  boundary layer  with s ide   i n l e t8  is 
essential not  only from the standpoint of  increasing the pressure   re -  
covery b u t  also of decreasing  the  dis tor t ion.  

- 
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CONCLUDING RF54ARKs 
L 

Dis tor t ion  at t h e  compressor cas be reduced by reducing   the   d i s -  
t o r t i on   en te r ing  the i n l e t   t h r o a t ,  by elfminat ing internal sources of  
d i s t o r t i o n ,  and by improving the mixing i n  the subsomic diff 'user.  

The d i s t o r t i o n .  that exist8 at t h e   i n l e t  throat is primarily a re- 
s u l t  of nonunifarm  compression  and may r e s u l t  from t he   en t r ance  of t h e  
vortex  sheet ,   operat ion at angle of a t t ack ,  shock-boundary-layer inter- 
action,  or  combinations of  these effects. A far steps can obviously be 
taken to reduce these sources of d is tor t ions .   For  example, entrance of 
the vortex sheet can be delayed by p o s i t i o n i n g   o b l i q e  shocks ahead of 
the  i n l e t  U p .  Shock-boundary-layer i n t e r a c t i o n  can be cont ro l led  to 
some extent  by the use of boundary-layer  control  such as compression 
sur face  bleed. 

With conical-nose  inlets ,  Urge d i s t o r t i o n s  at angle of  attack are 
.1 indicated.  Low d i s t o r t i o n s  can be achieved only by sh ie ld ing   such  fn-  

l e k  from angle  of attack. Other than conical  compression inlets may 
be required to reduce  angle-of-attack effects. For example, hor izonta l  . rang i n l e t s  are less s e n s i t i v e  t o  angle of attack. 

The mixing  of   dis tor ted f lows i n  the subsonic   diffuser  is pr imar i ly  
a function of  the length and the  average Mach nuniber of t he  duct.  Addi- 
tional. mixing can be obtained with forced mixing devices bu t   gene ra l ly  
at the expense of pressure  recovery and weight. This brief r e v i e w  of 
the problem would ind ica t e  that severe d i s t o r t i o n  problems  can be ex- 
pected  in  the f u t u r e  with high compression i n l e t s  and high weight-flow 
engines  required for  f l ight  at the higher  supersonic speeds. With such 
configurat ions the average duct  Mach number will be high and H t t l e  mix- 
i n g  will occur i n  the subsonic   diffuser .  The flow d i a t o r t i o n   e n t e r i n g  
4he i n l e t s  must thus be kept t o  a minimum, and  sources   of   dis tor t ion 
within the i n l e t  must be eliminated. No simple so lu t ion  t o  the dis tor-  
t i o n  problem is cu r ren t ly  evident. Sa;tiref&ctory  duct-engine combfna- 
t i o n s  w i l l  r equ i r e  careful a t t e n t i o n  to d e t a i l  and perhape compromises 
i n   b o t h  the airframe and the engine  designs. 

Lewis Flight Propulsion  Laboratory 
National  Advisory Committee f o r  Aeronautfcs 

Qleveland, Ohio, Ikvember 1, 1955 
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Figure 7. - EYTect of flow accelaration on distortion. Wch m e r ,  1.9. 
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